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ABSTRACT. We consider a class of probability measure dependent dynamical systems which arise

in the study of multiscale phenomena in diverse fields such asimmunological population dynam-

ics, viscoelasticity of polymers and rubber, and polarization in dielectric materials. We develop an

inverse problem framework for studying systems with distributed temporal delays. In particular,

we establish conditions for existence and uniqueness of theforward problem and well-posedness

(including method stability under numerical approximations) for the inverse problem of estimating

the probability measures. We show that a motivating class ofmodels of HIV infection dynamics

satisfies all the conditions of our framework, thereby providing a theoretical foundation for inverse

problem computations with these models.

1. INTRODUCTION

In this paper, we present a general theoretical framework including implementable approxima-

tion ideas for inverse problems involving measure dependent dynamical systems. In particular, we
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treat inverse problems for systems wherein the dynamics aregiven for the expected values of some

of the states

x̄(t,P) = EP[x(t,q)] =

Z

Q
x(t,q)dP(q) ,

with respect to a probability measureP defined on the Borel measurable subsets of an admissible

parameter setQ. Here, for example, the expected state dynamics might be given by a differential

equation

˙̄x(t) = f (t, x̄(t),P) ,

where the right side is dependent on the measureP. In general, the functionf can also represent

a delay or partial differential equation. Whatever the formof the system, the individual dynamics

(for eachq∈ Q) for x(t,q) are not available in the cases of interest to us here.

We specifically focus on a framework for systems of measure dependent delay differential equa-

tions that are motivated by examples arising in cellular-level modeling of HIV pathogenesis. In

this case, the probability distributions characterize delays inherent in cellular pathways for virus

production. These delays represent lags between acute infection of cells and the initiation of vi-

ral production as well as between productive acute infection and chronic infection (e.g., see the

discussions in [19, 22, 25, 29, 30, 31, 32]). The particular model that motivates our mathematical

efforts here was derived in [6] to describe infection dynamics in anin vitro experiment and is given

by the system of integro-differential equations

V̇(t) = −cV(t)+nA

Z 0

−r
A(t + τ)dP1(τ)+nCC(t)− pV(t)T(t)(1.1)

Ȧ(t) = (rv−δA−δX(t))A(t)− γ
Z 0

−r
A(t + τ)dP2(τ)+ pV(t)T(t)(1.2)

Ċ(t) = (rv−δC−δX(t))C(t)+ γ
Z 0

−r
A(t + τ)dP2(τ)(1.3)

Ṫ(t) = (ru−δu−δX(t)− pV(t))T(t)+S.(1.4)
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The compartment variables consist of the virusV and the acutely infected, chronically infected,

and uninfected T-cells,A, C, and T, respectively, whileX represents the total cell population

(A+C+T). The probability measuresP1 andP2 correspond, respectively, to the distributions of

the two pathogenic delays discussed above. In the derivation of this model, we ascribed no subclass

variability to A andT and consequently only the variablesC andV are actually expected values

(with respect toP1 andP2, respectively). All constitutive parameters (c, nA, nC, p, rv, δA, δ, γ, δC,

ru, δu) and details of the model as well as its derivation are fully described in [6].

The example motivating our efforts here is merely one of several important examples of measure

dependent dynamics that have arisen in recent applications. Realistic models in viscoelasticity of

polymers and rubber as well as polarization in dielectric materials share certain features with our

formulation. Specifically, recent studies [12, 13] of molecular-based stick-slip reptation models

for heterogeneous viscoelastic polymer chain materials involve systems of the form

(1.5) γ
∂2u(t,x)

∂t2 −
∂
∂x

σ(t,x;P) = F(t) ,

whereu is the tensile displacement,σ is the measure dependent stress

(1.6) σ(t,x;P) = ge(ε(t), ε̇(t))+ν
Z

T

ε1(t,x;τ)dP(τ) ,

with strainε = ∂u
∂x and “internal” strainε1 defined by

(1.7)
∂ε1

∂t
(t,x;τ)+

1
τ

ε1(t,x;τ) = ε̇(t,x)h(ε(t,x)) .

In [14] it is shown that similar models (with different nonlinearities in (1.6), (1.7)) are important

if one replaces Fung kernels [21] with equations for distributed molecular mechanisms in describ-

ing shear response in biotissue. In another important application [8], the systems are the usual

Maxwell’s equations for the electromagnetic fieldsE andH in a heterogeneous dielectric and are

given by

∇×E = −∂B
∂t ∇ ·D = 0

∇×H = ∂D
∂t +J ∇ ·H = 0

D = εrE +P ,
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with the exception that the probability measure (P) dependent macroscopic polarizationP is given

by

P (t) =

Z

T ×D
[p1(t;τ)+ p2(t;d)]dP(τ,d).

In this case, the microscopicorientational(Debye) polarizationp1(t;τ) is defined by

ṗ1+
1
τ

p1 = ε̃E ,

and the microscopicelectronic(Lorentz) polarizationp2(t;d) is defined by

mp̈2+cṗ2 +kp2 = ε̂E ,

with d = 2m
c . In the equations for bothp1 and p2, the parametersτ andd represent relaxation

parameters which may vary over the admissible setT ×D according to some unknown but sought

after probability measureP = P(τ,d).

In each of these examples, one seeks to characterize the material behavior to perturbations by

finding a measureP∗ that provides the “best” mathematical system response whencompared to

observations of the physical system.

Finally, a more classical use of measure dependent dynamical systems can be found in the

literature on “relaxed” or “sliding regime” control systems (e.g., [28, 35, 36] as well as in Preisach

models for hysteresis in materials (e.g., see [10, 11, 24, 27, 34] and the references therein).

In this paper, we formulate an inverse problem framework forestimating the measures (us-

ing system observations) in systems of probability measure-dependent nonlinear delay differential

equations. To do this, we employ the Prohorov metric (equivalent to weak convergence of mea-

sures) in a functional analytic setting. We also show how to develop an approximation approach

that is readily implemented to obtain computational methods. Finally, we illustrate that the HIV

systems in [6] are concrete realizations of systems satisfying the hypotheses in our framework. We

thus provide a theoretical foundation for the computational methods used with experimental data

in [6] as well as provide a general framework for a class of systems arising in other applications.
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2. THEORETICAL FRAMEWORK FORGENERAL DELAY SYSTEM

2.1. Theoretical Framework. We begin by considering ann-dimensional generalized delay sys-

tem:

ẋ(t) = g(x(t),xt,P1,P2, . . . ,Pnp) , t ≥ 0(2.1)

(x(0),x0) = (Φ(0),Φ) ,(2.2)

for the piecewise absolutely continuous (PAC) initial condition Φ, defined on the hysteretic do-

mainQ = [−r,0] wherer > 0. Following the standard practice in the delay differential equation

literature, we let the notationxt represent the functionθ 7→ x(t + θ), −r ≤ θ ≤ 0. Furthermore,

we let S be the class of all Borel subsets ofQ (the Borelσ-algebra), andP(Q) be the space of

probability measures on(Q,S). In order to make this framework applicable to realistic problems,

we restrict the space of admissible probability distributionsPad(Q) to PAC functions with a finite

number of saltations, wherePi ∈ Pad(Q), i = 1,2, . . . ,np. To establish the theoretical framework

necessary to estimate a finite numbernp of probability distributionsPi , i = 1, . . . ,np, in (2.1), we

define the set

Πad =
np

∏
i=1

Pad(Q) .

Thusπ ∈ Πad means thatπ = (P1, . . . ,Pnp), for P1, . . . ,Pnp ∈ Pad(Q).

In the following discussion, we make use of a construct from advanced probability theory, the

Prohorov metric(denoted byρ). As we note below, convergence in the Prohorov metric is equiva-

lent to “weak convergence of measures” (which is actually weak* convergence when considering

P ⊂ C ∗, whereC is the space of continuous functions onQ with the max norm). We recall the

definition of the Prohorov metric onP(Q) for any arbitrary complete metric spaceQ with metric

dist. For any closedF ⊂ Q andε > 0, we define theε-neighborhood ofF by

Fε = {q∈ Q : dist(q̃,q) < ε, for some ˜q∈ F} .
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The Prohorov metric is then the mappingρ : P(Q)×P(Q) → R
+ defined by

ρ(P1,P2) = inf {ε > 0 : P1(F) ≤ P2(F
ε)+ ε, F closed,F ⊂ Q} .

It is known (see [16, 17, 20, 26, 33]) that convergencePn → P in the Prohorov metric is equivalent

to the statement

Z

Q
φdPn →

Z

Q
φdP for all φ ∈ C (Q) ,

which is convergence in expectation or distribution, also called weak convergence of measures.

We define a topology forΠad by extending the Prohorov metric such that forπ, π̃ ∈ Πad, we let

ρΠ(π, π̃) =
np

∑
i=1

ρ(Pi, P̃i) ,

whereπ = (P1, . . . ,Pnp) andπ̃ = (P̃1, . . . , P̃np). Given our datadi ∈R
nd , nd ≤ n, sampled at discrete

timesti, i = 1,2, . . . ,nt and observation matrixC∈R
nd×n, the goal of the inverse problem is to find

a solution to

(2.3) min
π∈Πad

J(π;d) = min
π∈Πad

nt

∑
i=1

|Cx(ti,π)−di|
2 ,

wherex is the solution to (2.1)-(2.2) corresponding toπ andd = {d1, d2, . . . dnt}. Note that in

general,J need not have a unique minimizer, and thus the correspondingsolution (denoted by

Π∗(d)) could be a set of probability distribution functions. In this case, we would then define the

distance between two of these setsΠ∗(d) andΠ∗(d̃) (for datad, d̃) to be

dH(Π∗(d),Π∗(d̃)) = inf
{

ρΠ(π, π̃) : π ∈ Π∗(d), π̃ ∈ Π∗(d̃)
}

,

which is the well-known Hausdorff distance (see [23]).

To establish the well-posedness of (2.3) within our framework, we now examine the forward

and inverse problems.



INVERSE PROBLEMS FOR A CLASS OF MEASURE DEPENDENT DYNAMICALSYSTEMS 7

2.2. Forward Problem. To prove the well-posedness of the forward problem, we need to estab-

lish conditions for the existence and uniqueness of a solution to (2.1)-(2.2) as well as its continuous

dependence uponπ in theρΠ metric. We first give conditions on the functiong in (2.1).

Condition 2.1. Let (η,φ,π), (η̃, φ̃, π̃) ∈ R
n ×PAC(Q;Rn)×Πad. We require that the function

g : R
n×PAC(Q;Rn)×Πad → R

n, satisfy

∣∣g(η,φ,π)−g(η̃, φ̃, π̃)
∣∣ ≤ KL

{
|η− η̃|+

∣∣φ− φ̃
∣∣
∞
}

+T (φ;π, π̃) ,

whereKL > 0, |·|, |·|∞ are the Euclidean norm inRn and the max norm on PAC(Q;Rn), respectively,

and the last term on the right sideT (φ;π, π̃) is some function such that for eachφ ∈ PAC(Q;Rn),

T (φ;π, π̃) → 0 asρΠ(π, π̃) → 0 and|T (φ;π, π̃)| ≤ K|φ|∞.

Following the standard Picard iteration arguments for proving the existence and uniqueness of

the solution to an ordinary differential equation on a finiteintervalI = [0, t f ], we begin by rewriting

(2.1)-(2.2) as

x(t) =





Φ(0)+
R t

0 g(x(s),xs,π)ds for t ∈ I

Φ(t) for t ∈ Q,
(2.4)

with initial conditionΦ. In the subsequent proof, we will make use of the following definition.

Definition 2.2. Let successive approximationsto the solution of (2.4) on[−r, t f ] be defined for

j = 0,1,2, . . ., as

y0(t) =





Φ(0) for t ∈ I

Φ(t) for t ∈ Q

y j+1(t) =





Φ(0)+
R t

0 g(y j(s),y j
s,π)ds for t ∈ I

Φ(t) for t ∈ Q,
(2.5)

with initial conditionΦ andπ ∈ Πad.
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Theorem 2.3.Consider the system of equations (2.1) with initial conditionΦ ∈ PAC(Q;Rn) and t

in a finite interval I= [0, t f ], 0 < t f < ∞. If the function g satisfies Condition 2.1, then there exists

a unique solution to (2.1) on I.

Proof. The general idea of our argument, which is quite standard, isto show that the successive

approximations defined in (2.5) converge to a unique solution of (2.1).

Let the residual function of two functionsxt , x̃t be defined as

(2.6) e(t;xt, x̃t) = |x(t)− x̃(t)|+ |xt − x̃t |∞ ,

for xt , x̃t ∈ PAC(Q;Rn), t ∈ I .

If we consider the residual for the functionsy j+1 andy j , as defined in (2.5) we find that fort ∈ I

and j > 0

e(t;y j+1
t ,y j

t ) =

∣∣∣∣
Z t

0

{
g(y j(s),y j

s,π)−g(y j−1(s),y j−1
s ,π)

}
ds

∣∣∣∣

+

∣∣∣∣
Z t+·

0

{
g(y j(s),y j

s,π)−g(y j−1(s),y j−1
s ,π)

}
ds

∣∣∣∣
∞

≤ KL

Z t

0
e(s;y j

s,y
j−1
s )ds+

∣∣∣∣KL

Z t+·

0
e(s;y j

s,y
j−1
s )ds

∣∣∣∣
∞

and thus

(2.7) e(t;y j+1
t ,y j

t ) ≤ 2KL

Z t

0
e(s;y j

s,y
j−1
s )ds.

Note that the case forj = 0 (with t ∈ I ) is special:

e(t;y1
t ,y

0
t ) =

∣∣y1(t)−y0(t)
∣∣+
∣∣y1

t −y0
t

∣∣
∞

=

∣∣∣∣
Z t

0
g(y0(s),y0

s,π)ds

∣∣∣∣+
∣∣∣∣
Z t+·

0
g(y0(s),y0

s,π)ds

∣∣∣∣
∞

≤ 2
Z t

0

{
KL
∣∣e(s,y0

s,0)
∣∣}ds

≤ 2KL

Z t

0
(|Φ(s)|+ |Φ|∞)ds

≤ 2KL (|Φ(0)|+ |Φ|∞) t ,
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and thus

e(t;y1
t ,y

0
t ) ≤ KGt ,

where

KG = 2KL (|Φ(0)|+ |Φ|∞) .

We claim that from (2.7) and thej = 0 case, we have

(2.8) e(t;y j+1
t ,y j

t ) ≤
KG

2KL

(2KLt) j+1

( j +1)!
, t ∈ I .

Clearly, this is true forj = 0, and the general case follows easily from induction using (2.7). Using

the estimate (2.8), we can then infer that

∞

∑
j=0

e(t;y j+1
t ,y j

t ) ≤
KG

2KL

∞

∑
j=0

(2KLt)( j+1)

( j +1)!

≤
KG

2KL
e2KLt .

Thus, by the comparison test,∑∞
j=0e(t;y j+1

t ,y j
t ) converges uniformly fort ∈ I , which proves that

{y j(t)} converges uniformly for allt ∈ I . Denote limj→∞ y j(t) asy(t). Since they j ’s are continuous

and converge uniformly toy, we see thaty is both continuous onI and satisfies (2.1) by taking limits

in (2.5). Note that this also yieldsy absolutely continuous onI .

To prove the uniqueness of our solution, suppose we have two distinct solutions{y, ỹ} ∈ C (I)

to (2.1). Using the same arguments as in establishing (2.7),we have

e(t;yt, ỹt) ≤

∣∣∣∣
Z t

0
{g(y(s),ys,π)−g(ỹ(s), ỹs,π))}ds

∣∣∣∣

+

∣∣∣∣
Z t+·

0
{g(y(s),ys,π)−g(ỹ(s), ỹs,π))}ds

∣∣∣∣
∞

≤ 2KL

Z t

0
e(s;ys, ỹs)ds.

Thus by Gronwall’s inequality we have that

|y(t)− ỹ(t)|+ |yt − ỹt |∞ ≤ 0 for t ∈ I .
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Thusy(t) = ỹ(t) for t ∈ I and also fort ∈ Q since both solutions satisfy the same initial condition.

We have therefore now proven that there exists a unique solution (for t ∈ [−r, t f ]) to (2.4) and

thus to (2.1), and that the solution is in fact absolutely continuous onI . �

Remark2.4. Existence and uniqueness can be established on any finite interval I under somewhat

weaker conditions than the global Lipschitz requirement inCondition 2.1. In particular, under

conditions of local Lipschitz plus affine growth dominationat infinity, one can also establish the

existence and uniqueness results of Theorem 2.3. For examples and details of such arguments in

the case of general nonlinear systems, see [1, 2, 15].

In order to consider calculating a solution to the inverse problem (2.3), we must establish the

well-posedness of this optimization problem, which involves both proving that the solution to (2.1)

is continuous inπ and that there exists a solution to (2.3). Following the development in [7], with

inspiration from [4, 5], we will do so by examining both problem stability and method stability.

We say that theforward problem is well-posedif the unique solution to the model (in our case

x) is continuously dependent upon the measuresπ. Let us fix t ∈ I and consider the continuity

of a solution to (2.1)-(2.2) with respect toπ. Thus we interpret the solutionx as the mapping

x(t, ·) : Πad → R
n, parameterized by the timet.

Lemma 2.5. If t ∈ I = [0, t f ], Q= [−r,0], π ∈ Πad, and the right side g of (2.1) satisfies Condition

2.1, then the unique solution to (2.1)-(2.2) is point-wise continuous atπ ∈ Πad.

Proof. Sinceρ is a metric topology, it suffices to argue thatx(t,πi) → x(t,π) for any sequence

{πi}
∞
i=1 where asi → ∞, πi → π in ρΠ. From the definition of solutions, we find

|x(t,πi)−x(t,π)| ≤
Z t

0
|g(x(s,πi),xs(πi),πi)−g(x(s,π),xs(π),π)|ds.

Sinceg satisfies Condition 2.1, we have that

(2.9) |x(t,πi)−x(t,π)| ≤

Z t

0
KLe(s;xs(πi),xs(π))ds+ T̃ (πi,π) ,
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wheree is the residual as defined in (2.6) and̃T (πi,π) =
R t f

0 T (xs(π);πi,π)ds. Next, consider

|xt(πi)−xt(π)|∞ ≤

∣∣∣∣
Z t+·

0
|g(x(s,πi),xs(πi),πi)−g(x(s,π),xs(π),π)|ds

∣∣∣∣
∞

≤
Z t

0
|g(x(s,πi),xs(πi),πi)−g(x(s,π),xs(π),π)|ds,

which has the same bound as in (2.9). By combining these bounds we find that

e(t;xt(πi),xt(π)) ≤ 2KL

Z t

0
e(s;xs(πi),xs(π))ds

+2T̃ (πi,π) ,

and an application of Gronwall’s inequality yields

e(t;xt(πi),xt(π)) ≤ 2T̃ (πi,π)e
R t
0 2KLds

≤ 2T̃ (πi,π)e2KLt f .

From this it immediately follows that|x(t,πi)−x(t,π)| → 0 asi → ∞ andπi → π in the Prohorov

metric. Therefore, we have pointwise continuity of the solution x (and thusJ) with respect to the

optimization variableπ of interest in (2.3). �

2.3. Inverse Problem Stability and Method Stability. As mentioned at the beginning of the last

section, in order to fully justify our claim regarding the well posedness of the inverse problem, we

need to examine questions concerning the existence of a solution to (2.3) as well as the dependence

of those solutions upon given data.

Theorem 2.6.There exists a solution to the inverse problem as described in (2.3).

Proof. From results in [17], we know that ifQ is compact,(Pad(Q),ρ) is compact and thus by

extension,(Πad,ρΠ) is also compact. It is well known that a continuous function on a compact set

in a metric space attains a maximum and a minimum. By Lemma 2.5, we have thatπ 7→ x(t,π), for

fixed t ∈ I , is continuous and thusJ is continuous with respect toπ. We can, therefore, conclude

that there exist minimizers for the cost functionalJ. �
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Since the original inverse problem involves minimizing over infinite dimensional setsP(Q),

pursuing this optimization is clearly infeasible without some type of finite dimensional approxi-

mation. We thus need to describe some approximation spaces over which the optimization becomes

computationally tractable. LetQM = {qM
j }

M
j=1 be partitions ofQ = [−r,0] for M = 1,2, . . . and

QD =
∞

[

M=1

QM ,

where the sequences are chosen such thatQD is dense inQ. For a positive integerM, let

ΠM
ad =

{
π ∈ Πad : π =

(
M

∑
j=1

pi j ∆qM
j
, . . . ,

M

∑
j=1

pnp j∆qM
j

)
,

qM
j ∈ QM,0≤ pi j ,

M

∑
j=1

pi j = 1, i = 1, . . . ,np

}
,

where∆q is the Dirac delta-measure with atom atq. That is,∆q(E) is 1 if q ∈ E and 0 ifq /∈ E.

Finally, we define

ΠD =
∞

[

M=1

ΠM
ad ,

and use the fact thatQ is a complete, separable metric space. By Theorem 3.1 from [5], we

have thatΠD is dense inΠad in the ρΠ metric. We can, therefore, directly conclude that any

elementπ ∈ Πad can be approximated by a sequence{πM j}, πM j ∈ ΠM j
ad such that asM j → ∞,

ρΠ(πM j ,π) → 0.

Following the discussion concerning Theorem 4.1 in [5], we now state our theorem regarding

the continuous dependence of the inverse problem upon the given data as well as stability under

approximation of the parameter setsΠad.

Theorem 2.7. Let Q= [−r,0], assume that for fixed t∈ [0, t f ], π 7→ x(t,π) is continuous onΠad,

and let QD be a countable dense subset of Q as defined above. Suppose thatthe observed data

dm,d ∈ R
nt×nd, nd ≤ n, are such thatdm → d as m→ ∞. Moreover, suppose thatΠ∗M(dm) is

the set of minimizers for J(π;dm) overπ ∈ ΠM
ad corresponding to the datadm. Similarly, suppose

that Π∗(d) is the set of minimizers of J(π;d) over π ∈ Πad corresponding to the datad. Then,

dH(Π∗M(dm),Π∗(d)) → 0 as M,m→ ∞.
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Proof. Using continuous dependence of solutions onπ, compactness ofΠad, and density ofΠD in

Πad, the arguments follow precisely those for Theorem 4.1 in [5]. We thus can claim that

dH(Π∗M(dm),Π∗(d)) = inf
{

ρΠ(πM
m,π) : πM

m ∈ Π∗M(dm),π ∈ Π∗(d)
}

,

converges to zero asM,m→ ∞. �

Combining the results of these two theorems, we can establish both that there exists a solution to

the inverse problem and that it is continuously dependent (in the Hausdorff sense) upon the given

data. We established well-posedness of the forward problemin §2.2 and in this section, we have

shown problem stability and a limited type of method stability (stability under approximations of

the parameter sets) of our inverse problem. We can thereforeconclude that our inverse problem is

well-posed.

Lastly, we note that the theoretical results of this and the next section only apply to the iden-

tification of probability distributions. The extension to deterministic parameters, i.e., ones not

associated with the delay, also follows readily from considering the Ordinary Least Squares (OLS)

optimization overQad×Πad whereQad is the domain of admissible values for the deterministic

parameters.

3. APPROXIMATION IMPLEMENTATION

3.1. Approximation of the Forward Problem. The system described by (2.1)-(2.2) is a special

case of a more generalized equation that facilitates a discussion regarding its approximation. The

full discretization development, based upon the ideas of [9], is presented in [6, 18] and will only

be summarized here.

If we denote a generalized solution space asZ = R
n×L2(Q;Rn), we can define the nonlinear

operatorA : D (A ) ⊂ Z → Z by

D(A ) =
{
(φ(0),φ) ∈ Z : φ ∈ H1(Q;Rn)

}

A (φ(0),φ) =
(
g(φ(0),φ), φ̇

)
.
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With this definition, we can generalize (2.1)-(2.2) in the form

(3.1)
ż(t) = A z(t)

z(0) = z0 ,

wherez0 ∈ Z. As we shall see in §4 below, the system (2.1)-(2.2) is a special case of (3.1) where

z0 is restricted toRn×PAC(Q,Rn).

With index of approximationN, let {ZN,PN,A N} be our approximation scheme for (3.1) satis-

fying the conditions of Theorem 3.1 in [9], whereZN is a spline subspace ofZ, P
N is the orthogo-

nal projection ofZ ontoZN, andA N is the approximating operatorA N = P
NA P

N. Thus, using

{ZN,PN,A N} we can generate an approximation to the formulation described by (3.1), which we

denote by

(3.2)
żN(t) = A NzN(t)

zN(0) = P
Nz0 .

An alternative description of (3.2) is

zN(t) = P
Nz0 +

Z t

0

{
A

NzN(s)
}

ds.

Theorem 3.1. Given the systems described in (2.1)-(2.2) and (3.2) with z0 = (Φ(0),Φ), Φ ∈

PAC(Q;Rn), under Condition 2.1, we have that zN(t) → (x(t),xt), as N→ ∞, uniformly in t on

the finite interval I, where x is the solution of (2.1)-(2.2).

Proof. Following the arguments for Theorem 2.2 in [3] we readily obtain our desired conclusion.

�

For the full details, including the selection of an appropriate basis forZN, we direct the interested

reader to [6, 18] where piecewise linear splines were successfully employed.

3.2. Approximation of the Inverse Problem. Since we do not have direct access to an exact

solution to (2.1)-(2.2), our parameter estimation effortsare actually focused on solving

min
π∈Πad

JN(π,d) = min
π∈Πad

nt

∑
i=1

∣∣CxN(ti,π)−di
∣∣2 ,(3.3)
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with nt data observations. As described in the previous section, wecan obtain a uniformly conver-

gent (int on finite intervals for fixedπ) numerical scheme which generates an approximate solution

xN. We have not yet shown, however, that asN → ∞, xN(πi) → x(π) asπi → π in theρΠ metric,

which is needed for general “method stability” (see [5]). Arguments similar to those used in the

proof of Lemma 2.5 can be used to show that for fixedN, the approximationsxN (and henceJN )

are continuous inπ on Πad. However, the convergence of|xN(t,πi)−xN(t,π)| → 0 asN, i → ∞ is

not as obvious (but still true), and is proven in the following lemma.

Lemma 3.2.Let t∈ I, π∈Πad, and{πi} ∈Πad be such thatlim i→∞ ρΠ(πi,π) = 0. Then if xN(t,πi)

is the solution to (3.2) under the conditions of Theorem 3.1,we have|xN(t,πi)−xN(t,π)| → 0 as

N, i → ∞, uniformly in t on I.

Proof. DenotePN
1 as the first component of the orthogonal projection operatorP

N of Z ontoZN. By

using arguments similar to those employed in deriving inequality (2.7), we find that fort ∈ [0, t f ]

e(t,xN
t (πi),x

N
t (π)) =

∣∣xN(t,πi)−xN(t,π)
∣∣+
∣∣xN

t (πi)−xN
t (π)

∣∣
∞

≤ 2
∣∣xN

t (πi)−xN
t (π)

∣∣
∞

≤ 2

∣∣∣∣
Z t+·

0
P

N
1 g(xN(s,πi),x

N
s (πi),πi)−P

N
1 g(xN(s,π),xN

s (π),π)ds

∣∣∣∣
∞

≤ 2
Z t

0

∣∣g(xN(s,πi),x
N
s (πi),πi)−g(xN(s,π),xN

s (π),π)
∣∣ds,

and sinceg satisfies Condition 2.1, we then know that

e(t,xN
t (πi),x

N
t (π)) ≤ 2KL

Z t

0
e(t,xN

s (πi),x
N
s (π))ds+ T̃

N(πi ,π) ,

whereT̃ N(πi ,π) =
R t f

0 T (xN
s (π);πi,π)ds. By the boundedness of|xN

t (π)|∞ and dominated con-

vergence, we have that̃T N(πi,π) → 0 asi,N → ∞. A simple application of Gronwall’s inequality

gives us that

e(t,xN
t (πi),x

N
t (π)) → 0,

asN, i → ∞ andπi → π in theρΠ metric, and thus we conclude that|xN(t,πi)− xN(t,π)| → 0 as

well. Note that the convergence is actually uniform int on I . �
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Corollary 3.3. Under the conditions specified in Lemma 3.2, we conclude that|xN(t,πN)−x(t,π)|→

0 as N→ ∞ for πN → π in theρΠ metric. As before, convergence is uniform in t on I.

Proof. Consider

∣∣xN(t,πN)−x(t,π)
∣∣ ≤

∣∣xN(t,πN)−xN(t,π)
∣∣+
∣∣xN(t,π)−x(t,π)

∣∣ .

The first term converges due to Lemma 3.2, while the second term converges as a result of our

numerical scheme as given in Theorem 3.1. �

With this corollary, we are now prepared to examine questions concerning the existence of a

solution to (2.3) and (3.3) as well as the dependence of thosesolutions upon given data.

Theorem 3.4. There exists a solution to the original and approximate inverse problems in (2.3)

and (3.3), respectively. Moreover, one can find solutions tothe family of problems in (3.3) that

converge to a solution to (2.3) as N→ ∞.

Proof. As noted above, we have that(Πad,ρΠ) is compact. By Lemmas 2.9 and 3.2, we have

that bothπ 7→ x(t,π) andπ 7→ xN(t,π), for fixed t ∈ I , are continuous and thus bothJ andJN are

continuous with respect toπ. We therefore know that there exist minimizers inΠad for the original

and approximate cost functionalsJ andJN, respectively.

Let {π∗
N} ∈ Πad be any sequence of solutions to (3.3) and{π∗

Nk
} a convergent (inρΠ) subse-

quence of minimizers (this is possible sinceΠad is a compact metric space). Recall that minimiz-

ers are not necessarily unique, but one can always select a convergent subsequence of minimizers

in Πad. Denote the limit (inρΠ) of this subsequence asπ∗. By the minimizing properties of

π∗
Nk

∈ Πad, we then know that

(3.4) JNk(π∗
Nk

) ≤ JNk(π) for all π ∈ Πad .

By Corollary 3.3, we have the convergence ofxN(t,πN) → x(t,π) and thusJN(πN) → J(π) as

N → ∞ whenρΠ(πN,π) → 0. Therefore in the limit asNk → ∞, the inequality in (3.4) becomes

(3.5) J(π∗) ≤ J(π) for all π ∈ Πad ,



INVERSE PROBLEMS FOR A CLASS OF MEASURE DEPENDENT DYNAMICALSYSTEMS 17

with π∗ providing a (not necessarily unique) minimizer of (2.3). �

We have proven not only that there is a solution to the original and approximate inverse prob-

lems, but also that as we increase the state space accuracy ofthe approximate solution, in some

sense, it approaches a solution to the original inverse problem.

Following the discussion concerning Theorem 4.1 in [5], we now state our theorem regarding

the continuous dependence of the inverse problem upon the given data. We note that the following

theorem describes general “method stability” in problems where one approximates both the state

and parameter spaces.

Theorem 3.5. Let Q= [−r,0], assume that for fixed t∈ I = [0, t f ], π 7→ x(t,π) is continuous on

Πad in ρΠ, xN, JN are the approximations given in (3.2), (3.3), and let QD be a countable dense

subset of Q as defined above. Suppose the observed datadm,d ∈ R
nd, nd ≤ n are such thatdm→ d

as m→ ∞ and thatΠ∗M
N (dm) is the set of minimizers for JN(π;dm) over π ∈ ΠM

ad corresponding

to the datadm. Similarly, suppose thatΠ∗(d) is the set of minimizers of J(π;d) over π ∈ Πad

corresponding to the datad. Then, dH(Π∗M
N (dm),Π∗(d)) → 0 as N,M,m→ ∞.

Proof. If we combine the arguments of Theorem 2.7, Theorem 3.4, and Corollary 3.3, as in Theo-

rem 4.1 in [5], we readily can obtain

dH(Π∗M
N (dm),Π∗(d)) = inf

{
ρΠ(πM

N,m,π) : πM
N,m ∈ Π∗M

N (dm),π ∈ Π∗(d)
}
→ 0,

asN,M,m→ ∞. �

With the results of these two theorems, we can claim both thatthere exists a solution to the

inverse problem and that it is continuously dependent upon the given data. We established well-

posedness of the forward problem in §2.2, and in this section, we established method stability

(under approximation of the state space and parameter space) of our inverse problem. We can,

therefore, conclude general well-posedness of our inverseproblem.
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4. EXAMPLE ILLUSTRATION

We now outline an application of this framework to the HIV system (1.1)-(1.4) of §1. For fixed

t ∈ I , η∈R
4, φ ∈PAC(Q;R4), andπ = (P1,P2)∈Πad, consider the right side of system (1.1)-(1.4),

A1η+A2 f1(φ,π)+ f2(η)+ f3(t) ,

where

A1 =




−c 0 nC 0

0 rv−δA 0 0

0 0 rv−δC 0

0 0 0 ru−δu




, A2 =




0 nA 0 0

0 −γ 0 0

0 γ 0 0

0 0 0 0




,

f1(φ,π) =




EP1 [φ2]

EP2 [φ2]

EP2 [φ2]

0




, f2(η) =




−pη1η4

−δ
(
∑4

i=1 ηi
)

η2+ pη1η4

−δ
(
∑4

i=1 ηi
)

η3

−δ
(
∑4

i=1 ηi
)

η4− pη1η4




,

and

f3(t) = [0,0,0,S]T .

We note that the nonlinearities exemplified by terms such aspη1η4 in f2 are both biologically

unrealistic and fail to satisfy a global Lipschitz condition. Such terms in (1.1)-(1.4) can be correctly

viewed as approximations to nonlinear saturation terms. Weaddress this issue, as we did in [6],

with an approach which is readily justified from a biologicalviewpoint by saturation dynamics

principles. We definēf2 using f2 with standard saturation limited nonlinearities by replacing pη1η4
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by p1(η1)η4 andδηiη j by δi(ηi)η j for i, j = 2,3,4, where the functionsp1 andδi are defined as

p1(η1) =





0 ; η1 < 0

pη1 ; 0≤ η1 ≤ η̄1

pη̄1 ; η̄1 < η1 ,

(4.1)

and

(4.2) δi(ηi) =





0 ; ηi < 0

δηi ; 0≤ ηi ≤ η̄i

δη̄i ; η̄i < ηi ,

(for finite upper bounds̄ηi ∈ R
+, i = 1,2,3,4). The resulting function̄f2 is now globally Lipschitz

(see [3]). Withg redefined for fixedt as

g(η,φ,π) = Aη+ f1(φ,π)+ f̄2(η)+ f3(t) ,(4.3)

the well-posedness of the inverse problem forπ = (P1,P2) follows if we establish thatg satisfies

Condition 2.1. We proceed to argue that Condition 2.1 holds by observing that forη, η̃ ∈ R
4,

φ, φ̃ ∈ PAC(Q;R4), andπ = (P1,P2), π̃ = (P̃1, P̃2) ∈ Πad

∣∣g(η,φ,π)−g(η̃, φ̃, π̃)
∣∣≤ |A1| |η−ζ|+ |A2|

∣∣ f1(φ,π)− f1(φ̃, π̃)
∣∣+
∣∣ f̄2(η)− f̄2(η̃)

∣∣ .(4.4)

To bound the second term on the right side of (4.4), let us examine

∣∣ f1(φ,π)− f1(φ̃, π̃)
∣∣≤
∣∣EP1 [φ2]−EP̃1

[
φ̃2
]∣∣+2

∣∣EP2 [φ2]−EP̃2

[
φ̃2
]∣∣

≤
∣∣EP1 [φ2]−EP̃1

[φ2]
∣∣+
∣∣EP̃1

[φ2]−EP̃1

[
φ̃2
]∣∣

+2
∣∣EP2 [φ2]−EP̃2

[φ2]
∣∣+2

∣∣EP̃2
[φ2]−EP̃2

[
φ̃2
]∣∣

≤ 3
∣∣φ− φ̃

∣∣
∞ +

∣∣EP1 [φ2]−EP̃1
[φ2]
∣∣

+2
∣∣EP2 [φ2]−EP̃2

[φ2]
∣∣ .



INVERSE PROBLEMS FOR A CLASS OF MEASURE DEPENDENT DYNAMICALSYSTEMS 20

The last two terms comprise a functionT which, for fixedφ2, converges to zero whenP1,P2 con-

verge toP̃1, P̃2 in the Prohorov metric, and moreover satisfies the dominating bound of Condition

2.1. Thus we have

∣∣ f1(φ,π)− f1(φ̃, π̃)
∣∣≤ 3

∣∣φ− φ̃
∣∣
∞ +T (φ2;π, π̃) ,

as required in Condition 2.1.

To bound the third term on the right side of (4.4), we refer to the arguments presented in Lemma

4.2.1 in [6]. The multidimensional Mean Value Theorem implies that forη, η̃ ∈ R
4

f̄2(η)− f̄2(η̃) =

Z 1

0

〈
D f̄2(η+θ(η̃−η)),η− η̃

〉
dθ ,

where the 4×4 matrix valued function is given by

D f̄2 =
[

∂1 f̄2 ∂2 f̄2 ∂3 f̄2 ∂4 f̄2

]
,

where∂i f̄2 is the partial derivative of̄f2 with respect to theith component of its vector argument.

By the definition of f̄2 we know that the quantity|D f̄2| is be bounded by someK2. A simple

application of Cauchy-Schwarz then yields

∣∣ f̄2(η)− f̄2(η̃)
∣∣≤

Z 1

0

∣∣D f̄2(η+θ(η̃−η))
∣∣ |η̃−η|dθ

≤ K2 |η− η̃| ,

and the combination of this bound with (4.4) yields our claimwith KL = max{3,K2}.

Therefore, since the functiong satisfies Condition 2.1, we can conclude well-posedness of the

inverse problem of identifying distributions associated with time delays in the HIV viral infection

dynamics described by equations (1.1)-(1.4).
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5. CONCLUSIONS

Our efforts here are motivated by a class of mathematical models which partition populations

into subclasses according to a characteristic temporal delay. These delays can be viewed as re-

alizations of an associated probability distribution representing the percentage of a subclass in a

population. The specific microscale structure of these populations is, however, only accessible

as an expectation with respect to the distribution. In §1, wepresented examples of models ex-

hibiting these features which occur in a wide variety of fields such as immunological population

dynamics, viscoelasticity of polymers and rubber, and polarization in dielectric materials. In §2,

we developed a mathematical framework in which we establishexistence and uniqueness of the

forward problem and well-posedness for the inverse problemof estimating the probability mea-

sures. These results included method stability under numerical approximations, thus leading to a

computationally feasible methodology. Finally, we verified that one motivating model of HIV in-

fection dynamics (studied previously in [6]) satisfies all the conditions of our framework, thereby

providing a theoretical foundation for inverse problem computations with these models.
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